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Abstract 

In drug disco v ery, the successful optimization of an initial hit compound into a lead molecule requires multiple cycles of chemical modification. 
Consequently, there is a need to efficiently generate synthesizable chemical libraries to navigate the chemical space surrounding the primary 
hit. To address this need, we introduce ChemoDOTS, an easy-to-use web server for hit-to-lead chemical optimization freely a v ailable at https: 
// chemodots.marseille.inserm.fr/ . With this tool, users enter an activated form of the initial hit molecule then choose from automatically detected 
reactiv e functions. T he serv er proposes compatible chemical transf ormations via an ensemble of encoded chemical reactions widely used in 
the pharmaceutical industry during hit-to-lead optimization. After selection of the desired reactions, all compatible chemical building blocks are 
automatically coupled to the initial hit to generate a raw chemical library. Post-processing filters can be applied to extract a subset of compounds 
with specific ph y sicochemical properties. Finally, e xplicit stereoisomers and tautomers are computed, and a 3D conformer is generated for 
each molecule. The resulting virtual library is compatible with most docking softw are f or virtual screening campaigns. ChemoDOTS rapidly 
generates synthetically feasible, hit-focused, large, diverse chemical libraries with finely-tuned physicochemical properties via a user-friendly 
interf ace pro viding a po w erful resource f or researchers engaged in hit-to-lead optimization. 
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ntroduction 

hile the identification and validation of hit compounds is a
ontrivial first step in the drug discovery process, these com-
ounds normally require subsequent optimization to improve
heir efficacy , selectivity , and drug-like properties to become
hemical probes or therapeutic candidates. During this op-
imization phase, vast chemical spaces are explored to find
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analogs or derivatives of the initial hit compounds with im-
proved potency , selectivity , and better pharmacological prop-
erties. However, this hit-to-lead (H2L) optimization phase is
usually a major bottleneck in drug discovery campaigns ( 1 ).
Computational methods are increasingly being integrated into
the H2L optimization process to aid in predicting compound
properties, optimizing chemical structures, and prioritizing
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analogs for synthesis ( 1–5 ). One widely established approach
to optimize validated hits is known as ‘growing’. This in-
volves expanding chemical structures to introduce new in-
teractions with the target, in order to improve potency and
selectivity ( 6 ,7 ). However, a notable drawback emerges be-
cause of this strategy where the molecular weight of the com-
pounds increases, outpacing gains in target affinity or activity,
and leading to a phenomenon known as ‘molecular obesity’
( 8 ,9 ). Therefore, it is crucial to initiate the H2L optimization
phase with so-called ‘ligand-efficient’ molecules exhibiting a
low molecular weight and high activity or potency. Such com-
pounds can be obtained through the deconstruction or struc-
tural simplification of larger validated hit molecules ( 10 ,11 )
or starting with lower molecular weight compounds. There-
fore, fragment-based drug discovery (FBDD) appears as one
of the most relevant approaches to identify initial hits ( 12–16 ).
Fragments are low molecular weight chemical compounds de-
fined by the rule of three ( 17 ,18 ). One of the key advan-
tages of fragment libraries, compared to standard chemical
libraries used in high-throughput screenings, lies in the fact
that a small number of fragments can effectively represent a
vast chemical space ( 19 ,20 ). In addition, fragments also ex-
hibit high hit rates compared to larger compounds. Because
of the small size and low complexity of fragment molecules,
FBDD is often combined with structure-based approaches
to optimize the initial hits and increase their efficiency and
specificity ( 21 ,22 ). One important aspect of the H2L opti-
mization strategy is considering the synthetic feasibility of
the designed compounds. Indeed, each iteration of the grow-
ing strategy, aimed at exploring the chemical space around
the initial hit, involves synthesizing the designed analogs and
testing them experimentally. Achieving this is typically per-
formed through two main strategies. The synthetic feasibil-
ity can be estimated using machine learning approaches and
expressed through a retrosynthetic score ( 23 ). Alternatively,
carefully selected chemical reactions can be employed to vir-
tually design potentially optimized compounds, as demon-
strated by the curated collection proposed by Hartenfeller
et al. ( 24 ). In this collection, 58 medicinal chemistry-relevant
chemical reactions commonly used during the H2L optimiza-
tion stage in the pharmaceutical industry have been encoded in
the machine-readable SMARTS format. These reactions have
been implemented in several approaches including DOGS
( 25 ), CROSS ( 26 ), PINGUI / SCUBIDOO ( 27 ,28 ), AutoCouple
( 29 ), NAOMINEXT ( 30 ), CHIPMUNK ( 31 ), SwissDrugDe-
sign ( 32 ), AutoGrow4 ( 33 ), OpenChemLib ( 34 ) and eXplore
( 35 ). We also implemented this collection of reactions into
our integrated drug design strategy called diversity-oriented
target-focused synthesis (DOTS, ( 36 )). The DOTS approach
combines the design of focused chemical libraries and vir-
tual sampling to prioritize the best potential optimizations.
Briefly, after hit identification and characterization of its bind-
ing mode using structural biophysics method, such as X-ray
crystallography, a virtual library is generated. This is achieved
by combining an activated core analog of a hit fragment, with
a collection of functionalized building blocks (BBs) using the
chemical reactions previously defined by Hartenfeller et al .
( 24 ). Post-processing stages are then applied to extract a di-
verse subset of representative compounds that possess reason-
able physicochemical properties and are devoid of any unde-
sirable chemical functions. The final library undergoes virtual
screening with the S4MPLE tool ( 37 ,38 ) to identify the best
putative optimizations, aiming to create additional favorable
contacts while maintaining the original binding mode. The 
DOTS approach has been successfully applied to various tar- 
gets including the zika virus NS5 protein ( 39 ), syntenin PDZ 

domain protein ( 40–42 ), bromodomain-containing protein 4,
BRD4 ( 43 ) and, more recently, a nucleotide kinase, dCK ( 44 ).

As demonstrated above, the ensemble of chemical reactions 
defined by Hartenfeller et al. is widely used in the chemoinfor- 
matics community. However, there is currently no easy-to-use 
freely accessible web server able to efficiently generate large 
ready-to-dock virtual libraries using these chemical reactions.
In response to this gap, we introduce the ChemoDOTS web 

server designed to facilitate the generation of focused virtual 
libraries starting from a user-defined activated fragment. The 
user first proceeds by uploading or drawing a hit fragment in 

a sketcher. The web server then automatically identifies the 
chemical functions that permit the virtual coupling of BBs on 

the starting molecule. The user then selects one of the iden- 
tified chemical functions and chooses from a list of compat- 
ible chemical reactions. Subsequently, a raw chemical library 
corresponding to the given reactions and compatible BBs is 
generated. At this stage, the user is given the option to ap- 
ply a detailed set of post-processing filters to extract drug-like 
compounds with specific physicochemical properties. The fi- 
nal stage involves the computation of explicit stereoisomers 
and tautomers and the generation of a 3D conformer for each 

compound. A resulting virtual library compatible with most 
docking software is supplied as mol2 files with atom types 
and partial charges. The web server is freely accessible to all 
users, including commercial users, at the following address 
http:// chemodots.marseille.inserm.fr/ . 

Materials and methods 

Web server architecture 

The web server is composed of two parts: the frontend, which 

handles user interactions, and the backend, which performs 
the computations. The frontend is a single-page application 

(SPA) designed with the React framework and embedding the 
MarvinJS sketcher version 22.11.1 from Chemaxon ( https: 
// chemaxon.com/ ). The backend server is written in Rust to 

speed up response time. It runs under a virtualized (KVM) 
Linux instance with a 4 cores / 8 hyperthreads Intel CPU, 32 

GB of RAM and 90 GB of storage. It makes use of a Post- 
greSQL database to store all the internal data (e.g. chemical 
functions, encoded chemical reactions, building blocks) and 

user-submitted data. 
The raw compound references were stored separately from 

the building blocks to facilitate the treatment of duplicate 
molecules within or across providers while maintaining trace- 
ability. Chemical reactions, building blocks, and starting frag- 
ments were stored in their source / human readable format 
(SMARTS for reactions, SMILES for building blocks and frag- 
ments) to allow extensibility and direct compatibility with ex- 
ternal tools. Additionally, they were stored in the RDkit pickle 
binary format which does not require sanitization and reduces 
loading time. Each operation was heavily parallelized using a 
thread pool across all available CPU cores to guarantee max- 
imum performance. This was achieved through Rust’s fear- 
less concurrency mechanisms and the Rayon crate for paral- 
lel iterators. Database indexes were carefully defined to avoid 

computational bottlenecks without increasing the database 
size and reindexing workload for the database management 

http://chemodots.marseille.inserm.fr/
https://chemaxon.com/
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ystem. To prevent unnecessary calculations, the list of build-
ng blocks available for each reaction was precomputed and
tored within the database. The combined use of these opti-
izations allows fast chemical library generation producing

t least 50 000 compounds per minute per reaction. 

eneration of raw chemical library 

ll the chemoinformatics operations are performed using
he RDKit framework version 2023.09.5 ( https://www.rdkit.
rg/) unless otherwise stated. 

reparation of building blocks 
he list of 626 026 commercially available building blocks
s of 2024-02 was retrieved from MolPort ( https://www.
olport.com/) as an SDF file. Then, a standardization pipeline
as applied to discard undesirable compounds. First, for each

ompound, the largest organic fragment was selected discard-
ng salts. The compounds containing only organic atoms (H,
, N, O, P, S), halogens (F, Cl, Br, I) or other atoms relevant

n medicinal chemistry (B, Sn) were kept while explicit iso-
opes were filtered out. A series of filters were then applied to
nly retrieve BBs with < 2 unspecified stereocenters, less than
7 rotatable bonds to limit flexibility, less than 4 rings and
etween 5 and 24 heavy atoms to restrict the molecules size
o an acceptable range. Finally, the compound charges were
eutralized. The standardized building blocks were converted
nto canonical SMILES allowing duplicates to be identified
nd grouped together with the same internal reference. The
esulting chemical structures were serialized using the RDKit
ickle format for faster loading from database storage. In the
nd, 501 542 unique building blocks from MolPort were kept.
he same pipeline was applied for the 1 254 866 commercially
vailable building blocks as of 2024-02-05 from the Enamine
omprehensive catalog ( https:// enamine.net/ building-blocks/
uilding- blocks- catalog ), resulting in the selection of 988 112
nique building blocks. 

etection of reactive functions 
eactive functions are detected by matching each building
lock against the chemical reactions. A substructure match is
erformed between an expected reactant template and a build-
ng block so that all the reacting building blocks for a given
eaction are pre-identified and stored inside the database. 

ist of chemical reactions 
he list of 58 SMART-encoded reactions was taken from the
ublication of Hartenfeller et al. ( 24 ). Several in-house reac-
ions (numbered 61–70) used in internal projects have been
dded to overcome some exceptions in the original list of re-
ctions. The complete list of reactions and their corresponding
MARTS are provided in Supplementary Tables S3 –S5 . 

etection of compatible chemical reactions 
o identify reactions compatible with a selected chemical
unction on a provided fragment, the reactant templates from
he reaction SMARTS are matched against the fragment to
dentify the reacting atoms. Only reactions for which one tem-
late shares at least one common atom with the function are
ept. 
Generation of raw chemical library 
All fragment atoms not involved in the reaction are masked
to prevent reactions with unwanted functions and to speed
up the process. Next, the reaction products are generated.
Building blocks leading to more than one distinct product
are discarded. The products are then grouped by canonical
SMILES to identify duplicates (if any) and the 2D coordinates
are generated. At this stage, a set of molecular descriptors are
computed. These descriptors are the fraction of sp 

3 carbons
over the total carbon count (Fsp 

3 ), the number of hydrogen
bond donors (HBD), the number of hydrogen bond accep-
tors (HBA), the logarithm of the predicted partition coefficient
between octanol and water (cLogP), the average molecular
weight (MW) and the topological polar surface area (TPSA).
The products in SMILES / pickle formats and their descrip-
tors are stored inside the database. Finally, the building blocks
and products are exported to downloadable SDF and SMILES
files. 

Statistics of raw chemical library 
At each step of the library generation, counters are imple-
mented for individual reactions to report statistics, including
the number of reacted building blocks, the number of raw
products, the number of duplicates and the number of final
unique products. These reaction-specific counters are merged
to derive overall statistics for the generated chemical library. 

Post-processing stage 

Filtering using physico-chemical descriptors 
Histograms showing the frequency distribution of compounds
are produced using molecular descriptors computed during
the raw library generation. For discrete descriptors (HBA,
HBD), a single bin is assigned for each unique value within the
range of the descriptor. In the case of continuous descriptors
(Fsp 

3 , cLogP , MW , TPSA) 15 bins are specified. Then, the num-
ber of compounds matching a user-defined interval is com-
puted in real time for each descriptor. This involves querying
the database using descriptors indexes to retrieve the relevant
information. 

Generation of 2D library 
The available products are collected from the database, then
filtered using the intervals defined during the post-processing
stage, sorted by molecular weight, and exported to download-
able SMILES and SDF files. 

Generation of 3D library 
The filtered products are fetched from the database and the
major microspecies are computed at pH 7 using a simplified
pKa model derived from OpenBabel ( 45 ). The protonation
states predicted by OpenBabel are not always reliable. We
intend to use other freely available tools in future versions.
We are currently investigating different approaches including
SPORES ( 46 ) and AI-based tools ( 47–49 ). An embedding step
is performed to quickly generate a 3D conformation of the
molecule with a correct geometry using ETKDG from RDKit
( 50 ). The validity of the generated conformations can be ver-
ified using PoseBusters, a Python package that performs stan-
dard quality checks using RDKit ( 51 ). A 3D SDF file is then
exported. In addition, the atom types are inferred according to
Corina, and Gasteiger partial charges are computed to gener-
ate a ready-to-dock mol2 file. It is worth noting that, to reduce

https://www.rdkit.org/
https://www.molport.com/
https://enamine.net/building-blocks/building-blocks-catalog
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae326#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae326#supplementary-data
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Figure 1. Ov ervie w of the generation of virtual libraries w orkflo w. ( A ) First, the user is prompted to draw or upload the str uct ure of the initial hit fragment 
into the Marvin JS sketcher. Standard formats such as SMILES, SDF, or PDB are recognized. ( B ) In the second step, all chemical functions compatible 
with the growing mode are automatically detected. The user should select the desired function for growing. ( C ) All chemical reactions compatible with 
the chosen chemical function are shown. They are subdivided into three categories depending on their relevance. A text box is provided to search for 
specific chemical reactions using rule ID numbers or k e yw ords. T he different chemical reactions can be highlighted by hovering on the information icons. 
The user should select at least one chemical reaction before proceeding to the next step. For example, they may choose to perform sulfonamidation, 
such as the chemical reaction between a primary alkylamine and sulf on yl chlorides (rule 48 defined by Hartenfeller). ( D ) A summary of the selected input 
is provided along with key molecular descriptors commonly used in early drug discovery. The user should select the building block database that will be 
used to generate the focused chemical libraries. The raw libraries are generated in seconds to minutes depending on the number of reactions selected 
and the number of compatible building blocks. In the given example, all selected building blocks contain a sulfonyl chloride function. 
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computational times, the energy of the generated conformers
is currently not minimized using any forcefield. However, we
are actively exploring the addition of an optional step for effi-
cient energy minimization to optimize the 3D structure of the
generated molecules. 

Program description 

Design of the raw focused virtual library 

The overall workflow for designing the raw virtual library
can be divided into 4 main steps summarized in Figure 1 .
First, the user must draw or upload the structure of the initial
fragment (Figure 1 A) using the provided Marvin JS sketcher
from ChemAxon ( https:// chemaxon.com/ ). The SMILES code
of the user-defined molecule is automatically generated. It is
important to note that this reference fragment should con-
tain at least one chemical function compatible with the frag-
ment growing approach. A list of compatible functions is
provided via the ‘Reactions’ link on the website, as well as
in Supplementary Table S1 and S2 and in Figure S1 . Two
examples of molecules are provided to assist the user and
can be directly imported into the sketcher (Figure 1 A). In
the next step, chemical functions present in the provided
molecule are automatically detected and highlighted in the
sketcher upon selection (Figure 1 B). Users are then prompted
to choose the chemical function for the fragment growing
approach. For each chemical function, a list of compatible
chemical reactions is provided (Figure 1 C). These chemical 
reactions are derived in part from the 58 reactions com- 
piled by Hartenfeller et al. ( 24 ). The comprehensive list of 
reactions used in ChemoDOTS, along with their SMARTS 
representations, is available in Supplementary Tables S3 –S5 .
These chemical reactions are categorized into three groups 
based on their relevance. Users are required to select at least 
one compatible chemical reaction before proceeding to the 
next step. In the next step, a summary is provided, includ- 
ing the 2D structure of the initial fragment, key molecular 
descriptors, the SMILES code, the chemical function for frag- 
ment growing, and the selected compatible chemical reactions 
(Figure 1 D). 

In the current version, the database contains 501 542 BBs 
from MolPort ( https:// www.molport.com/ ) and 988 112 

from Enamine ( https:// enamine.net/ building-blocks ).
In future releases, we plan to incorporate collections 
of BBs from other providers such as ChemDiv ( https: 
//www .chemdiv .com/catalog/building-blocks ), ChemSpace 
( https:// chem-space.com/ building-blocks ) or Otava 
( https:// www.otavachemicals.com/ products/ chemical- 
building-blocks ). Additionally, we aim to enable users to 

upload their own collections of BBs. 
All compounds compatible with the selected parameters are 

then generated within seconds to minutes depending on the 
number of BBs that are compatible with the chosen reactions 
(Figure 1 D). On average 1000–1500 compounds are gener- 
ated per second. 

https://chemaxon.com/
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae326#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae326#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae326#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae326#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae326#supplementary-data
https://www.molport.com/
https://enamine.net/building-blocks
https://www.chemdiv.com/catalog/building-blocks
https://chem-space.com/building-blocks
https://www.otavachemicals.com/products/chemical-building-blocks
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Figure 2. Postprocessing of the raw chemical library. The raw library generated in the initial stage of the process can be refined by adjusting molecular 
descriptors commonly used in the early phases of drug disco v ery. T hese descriptors include molecular w eight (MW), logarithm of n-octanol-w ater 
partition (cLogP), topological polar surface area (TPSA), number of hydrogen bond donors (HBD), number of hydrogen bond acceptors (HBA), and 
fraction of sp 3 carbons (Fsp 3 ), an indicator of the three dimensionality of molecules. For each property, the distribution is displa y ed, and a slider allows 
users to adjust the minimum and maximum values of each descriptor. The total number of molecules in the filtered library is automatically updated. 
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tatistics of the raw library 

pon generating the raw virtual library, a new page is dis-
layed presenting general statistics about the library such as
he number of generated compounds and duplicates. For each
elected reaction, similar statistics are provided along with its
verall contribution to the entire chemical space of the raw li-
rary. In addition, a subset of the generated compounds can be
isplayed in 2D format. At this stage, the raw library and the
orresponding BBs can be downloaded in SDF and SMILES
ormats. 

ostprocessing 

he subsequent steps are optional and are highlighted in Fig-
re 2 . In the post-processing stages, users have the possibil-
ty to fine-tune the drug-like properties of the compounds
n the virtual library. The distributions of six key molecu-
ar descriptors are available encompassing MW , cLogP , HBD,
BA, TPSA, and Fsp 

3 . Additional common descriptors will
e added in future release or upon request. Users can eas-
ly modify the range of each value by using the graphi-
al sliders provided below each plot. The filtered chemi-
al library can then be downloaded in SDF and SMILES
ormats. 

eneration of ready-to-dock files 

n the last step, major microspecies, atomic types, partial
harges, and one 3D-conformer of each compound in the vir-
ual library are computed. The resulting final 3D library can
e downloaded in SDF and ready-to-dock mol2 formats. 
Retrospective case study 

We previously engaged in a fragment-based drug design pro-
gram followed by hit-to-lead optimization to develop chem-
ical probes targeting bromodomain proteins from the BET
family ( 36 , 43 , 52 ). Bromodomains are protein modules that
play a crucial role in gene regulation by recognizing and bind-
ing to acetylated lysine residues on histone proteins. The de-
velopment of bromodomain inhibitors is a promising strat-
egy in cancer treatment offering a targeted approach to mod-
ulate gene expression and hinder the growth of cancer cells
by disrupting crucial molecular interactions involved in the
regulation of gene transcription. Briefly, several primary hits
were identified through high throughput screening of an in-
house chemical library dedicated to protein–protein interac-
tions ( 52 ). The most potent inhibitor (K D 

≈ 1.4 μM) was
deconstructed, and its affinity was improved using structure–
activity relationship (SAR) studies (Figure 3 A). The resulting
fragment was activated with a primary amine to allow grow-
ing optimization using our in-house strategy that combines
virtual screening with automated real-world synthesis in a
platform called Diversity-Oriented Target-focused Synthesis
(DOTS, ( 36 )). This study led to the design of 17 compounds
with improved affinities. The affinity of the most potent com-
pound was improved more than 60 times compared to the
initial fragment and its binding mode was validated by X-ray
crystallography (PDB: 6FO5) ( 36 ). 

We tested the ability of ChemoDOTS to generate these
compounds. The initial fragment activated with a reactive
primary amine function was uploaded into the Marvin JS
sketcher (Figure 3 B). As expected, the primary amine func-
tion was automatically detected as the only chemical function
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Figure 3. Case study using a retrospective identification of bromodomain inhibitors. ( A ) We previously identified a xanthin derivative inhibitor of 
bromodomains through high throughput screening ( 52 ). This primary hit (K D ≈ 1.4 μM) was deconstructed to find the smallest fragment able to bind the 
target. This fragment was optimized and activated with a reactive primary amino group ( 36 ). Subsequently, this activated fragment was optimized using 
our in-house hit-to-lead approach called DOTS resulting in 17 compounds with improved affinities including a sub-micromolar probe exhibiting almost a 
2-log impro v ement ( 36 , 43 ). ( B ) To test the ability to generate such compounds, the activ ated fragment w as uploaded in SMILES f ormat on the 
ChemoD OTS serv er. T he primary alkylamine function w as automatically detected as the only reactiv e function on the molecule. T he sulf onamide 
reaction and the MolPort BBs were then selected to generate the raw virtual library resulting in 5546 sulfonamide derivatives. A post-processing filtering 
was applied to lead to 3644 compounds which include all 17 optimized compounds identified during the hit-to-lead optimization. 
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on the fragment. We then selected the sulfonamidation reac-
tion (#48 from Hartenfeller set of reactions) and the Mol-
Port BBs to generate the raw chemical library. The process
resulted in 5546 molecules in 5 s after removal of duplicates.
We then applied a standard filtering step using Lipinski-like
thresholds (MW < 550 g mol −1 ; log P < 5; number of hy-
drogen bond donors < 5; number of hydrogen bond accep-
tors < 10) leading to 3644 molecules. All 17 compounds
previously identified during the hit-to-lead optimization were
present in the final virtual library. All files generated during
this retrospective case have been deposited in a zenodo archive
( https:// dx.doi.org/ 10.5281/ zenodo.10701800 ). 

Discussion 

In summary, ChemoDOTS is a user-friendly web server that
enables the generation and exploration of a vast chemical
space around an initial hit molecule by combining molecular
building blocks and predefined chemistry rules. Over the last
few years, the concept of large chemical space exploration has
come to the forefront of drug discovery ( 35 ,53 ). All com-
pounds in the raw virtual library should be easily amenable
to organic synthesis in one or two steps. This is achieved by
using a collection of robust chemical reactions commonly used
in the hit-to-lead optimization phase in the pharmaceutical in-
dustry. The drug-like properties of the generated compounds
can be improved by adjusting various molecular descriptors.
The final chemical library is ready for synthesis or further in- 
vestigation using either ligand-based or structure-based vir- 
tual screening experiments. The high level of parallelization 

ensures the rapid generation of molecules at more than one 
thousand molecules generated per second. The global archi- 
tecture of the server as a database allows efficient web server 
maintenance and scalability. The current version of ChemoD- 
OTS relies on a collection of more than 500 000 BBs from 

MolPort and almost a million from Enamine. However, the 
virtual chemical space covered by ChemoDOTS can be easily 
extended through the integration of additional BBs from other 
providers or user-defined sources. Additionally, the incorpo- 
ration of new chemical reactions including those used in click 

chemistry offers further avenues for expansion ( 54 ,55 ). The 
post-processing stage allows users to custom-filter the final 
collection of compounds by physico-chemical properties in 

line with the requirements of their drug discovery project.
New molecular descriptors can be easily integrated at this 
stage in future releases of the server. We also anticipate ben- 
efiting from users’ feedback to upgrade ChemoDOTS and to 

deliver a better service. To our knowledge, ChemoDOTS is the 
only freely accessible functional and maintained web server to 

combine the design of medchem-compatible focused virtual li- 
braries with an integrated graphical postprocessing analysis.
Therefore, it creates a valuable resource for scientists engaged 

https://dx.doi.org/10.5281/zenodo.10701800
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n H2L optimization, particularly for those who may lack the
hemoinformatics knowledge required for tasks such as li-
rary enumeration, filtering and preparation for subsequent
ocking experiments. 

ata availability 

he ChemoDOTS web server is freely available at https://
hemodots.marseille.inserm.fr/. All scripts used in ChemoD-
TS backend have been deposited on GitHub ( https:

/ github.com/ iSCBTeam/ ChemoDOTS ). Permanent DOI of
he code used for ChemoDOTS: Backend: https://doi.org/
0.6084/ m9.figshare.25585089 Frontend: https:// doi.org/ 10.
084/m9.figshare.25585092 The list of chemical functions,
he list of reactions, and the final BBs from MolPort and
namine (in SMILES format) are available via Zenodo repos-

tory at https:// dx.doi.org/ 10.5281/ zenodo.10776787 . Files
rom the retrospective test case can be accessed through
he Zenodo repository at https:// dx.doi.org/ 10.5281/ zenodo.
0701800 . 

upplementary data 

upplementary Data are available at NAR Online. 
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